Solutions of the Einstein-Dirac equation on Riemannian 3-manifolds with constant scalar curvature ${ }^{\text {a/ }}$

Thomas Friedrich
Humboldt-Universität zu Berlin, Institut für Reine Mathematik, Ziegelstraße 13a, D-10099 Berlin, Germany
Received 2 March 2000

Abstract

This paper contains a classification of all three-dimensional manifolds with constant eigenvalues of the Ricci tensor that carry a non-trivial solution of the Einstein-Dirac equation. © 2000 Elsevier Science B.V. All rights reserved.

MSC: 53C25; 58G30
Subj. Class.: Differential geometry
Keywords: Riemannian spin manifold; Dirac operator; Einstein-Dirac equation

1. Introduction

Consider a Riemannian spin manifold of dimension $n \geq 3$ and denote by D the Dirac operator acting on spinor fields. A solution of the Einstein-Dirac equation is a spinor field ψ solving the equations

$$
\operatorname{Ric}-\frac{1}{2} S \cdot g= \pm \frac{1}{4} T_{\psi}, \quad D(\psi)=\lambda \psi
$$

Here S denotes the scalar curvature of the space, λ is a real constant and T_{ψ} the energymomentum tensor of the spinor field ψ defined by the formula

$$
T_{\psi}(X, Y)=\left(X \cdot \nabla_{Y} \psi+Y \cdot \nabla_{X} \psi, \psi\right)
$$

The scalar curvature S is related to the eigenvalue λ and the length of the spinor field ψ by the formula

$$
S= \pm \frac{\lambda}{n-2}|\psi|^{2}
$$

[^0]0393-0440/00/\$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.
PII: S0393-0440(00)00022-X

In [3] we introduced the weak Killing equation for a spinor field ψ^{*} :

$$
\begin{aligned}
\nabla_{X} \psi^{*}= & \frac{n}{2(n-1)} \mathrm{d} S(X) \psi^{*}+\frac{2 \lambda}{(n-2) S} \operatorname{Ric}(X) \cdot \psi^{*}-\frac{\lambda}{n-2} X \cdot \psi^{*} \\
& +\frac{1}{2(n-1) S} X \cdot \mathrm{~d} S \cdot \psi^{*}
\end{aligned}
$$

Any weak Killing spinor ψ^{*} (WK-spinor) yields a solution ψ of the Einstein-Dirac equation after normalization

$$
\psi=\sqrt{\frac{(n-2)|S|}{|\lambda|\left|\psi^{*}\right|^{2}}} \psi^{*}
$$

In fact, in dimension $n=3$ the Einstein-Dirac equation is essentially equivalent to the weak Killing equation (see [2,3]). Up to now the following three-dimensional Riemannian manifolds admitting WK-spinors are known:

1. the flat torus T^{3} with a parallel spinor;
2. the sphere S^{3} with a Killing spinor;
3. two non-Einstein Sasakian metrics on the sphere S^{3} admitting WK-spinors. The scalar curvature of these two left-invariant metrics equals $S=1 \pm \sqrt{5}$.
The aim of this paper is to classify all Riemannian 3-manifolds with constant eigenvalues of the Ricci tensor and admitting a solution of the Einstein-Dirac equation. In particular, we will prove the existence of a one-parameter family of left-invariant metrics on S^{3} with WK-spinors. This family contains the two non-Einstein Sasakian metrics with WK-spinors on S^{3}, but does not contain the standard sphere S^{3} with Killing spinors. Moreover, any simply-connected, complete Riemannian manifold $N^{3} \neq S^{3}$ with WK-spinors and constant scalar curvature is isometric to a space of this one-parameter family. In order to formulate the result precisely, we fix real parameters $K, L, M \in \mathbb{R}$ and denote by $N^{3}(K, L, M)$ the three-dimensional, simply-connected and oriented Riemannian manifold defined by the following structure equations:

$$
\omega_{12}=K \sigma^{3}, \quad \omega_{13}=L \sigma^{2}, \quad \omega_{23}=M \sigma^{1}
$$

or, equivalently:

$$
\mathrm{d} \sigma^{1}=(L-K) \sigma^{2} \wedge \sigma^{3}, \quad \mathrm{~d} \sigma^{2}=(M+K) \sigma^{1} \wedge \sigma^{3}, \quad \mathrm{~d} \sigma^{3}=(L-M) \sigma^{1} \wedge \sigma^{2}
$$

The one-forms $\sigma^{1}, \sigma^{2}, \sigma^{3}$ are the dual forms of an orthonormal frame of vector fields. Using this frame the Ricci tensor of $N^{3}(K, L, M)$ is given by the matrix

$$
\text { Ric }=\left(\begin{array}{ccc}
-2 K L & 0 & 0 \\
0 & 2 K M & 0 \\
0 & 0 & -2 L M
\end{array}\right)
$$

Main Theorem. Let $N^{3} \neq S^{3}$ be a complete, simply-connected Riemannian manifold with constant eigenvalues of the Ricci tensor and scalar curvature $S \neq 0$. If N^{3} admits a

WK-spinor, then N^{3} is isometric to $N^{3}(K, L, M)$ and the parameters are a solution of the equation

$$
\begin{equation*}
-K^{2} L(L-M)^{2} M+L^{3} M^{3}+K L^{2} M^{2}(M-L)+K^{3}(L-M)(L+M)^{2}=0 \tag{*}
\end{equation*}
$$

Conversely, any space $N^{3}(K, L, M)$ such that $(K, L, M) \neq(0,0,0)$ is a solution of $\left(^{*}\right)$ admits two WK-spinors for one and only one WK-number λ. With respect to the fixed orientation of $N^{3}(K, L, M)$ we have the two cases:

$$
\lambda= \begin{cases}\frac{S}{2 \sqrt{2}} \sqrt{\frac{S}{S^{2}-2|\mathrm{Ric}|^{2}}} & \text { if }-K<M, \\ \lambda=-\frac{S}{2 \sqrt{2}} \sqrt{\frac{S}{S^{2}-2|\operatorname{Ric}|^{2}}} & \text { if } M<-K\end{cases}
$$

The spaces $N^{3}(K, L, M)$ are isometric to S^{3} equipped with a left-invariant metric.
Remark. If the parameters $K=M$ coincide, the solution of Eq. (*) is given by

$$
L=\frac{1}{4} K(1-\sqrt{5}), \quad L=\frac{1}{4} K(1+\sqrt{5})
$$

and we obtain the Ricci tensors

$$
\text { Ric }=\left(\begin{array}{ccc}
\frac{1}{2} K^{2}(\sqrt{5}-1) & 0 & 0 \\
0 & 2 K^{2} & 0 \\
0 & 0 & \frac{1}{2} K^{2}(\sqrt{5}-1)
\end{array}\right)
$$

or

$$
\text { Ric }=\left(\begin{array}{ccc}
-\frac{1}{2} K^{2}(1+\sqrt{5}) & 0 & 0 \\
0 & 2 K^{2} & 0 \\
0 & 0 & -\frac{1}{2} K^{2}(1+\sqrt{5})
\end{array}\right)
$$

The non-Einstein-Sasakian metrics on S^{3} occur for the parameter $K=1$ (see [3]).
Remark. Using the standard basis of the Lie algebra $\mathfrak{s o}(3)$ we can write the left-invariant metric of the space $N^{3}(K, L, M)$ in the following way:

$$
\left(\begin{array}{ccc}
\frac{1}{|M-L||K+M|} & 0 & 0 \\
0 & \frac{1}{|K-L||M-L|} & 0 \\
0 & 0 & \frac{1}{|K-L||K+M|}
\end{array}\right)
$$

Eq. (*) is a homogeneous equation of order six. The transformation $(K, L, M) \rightarrow$ $(\mu K, \mu L, \mu M)$ corresponds to a homothety of the metric. Therefore, up to a homothety, the moduli space of solutions is a subset of the real projective space $\mathbb{P}^{2}(\mathbb{R})$ given by Eq. (*). This subset is a configuration of six curves in $\mathbb{P}^{2}(\mathbb{R})$ connecting the three points $[K: L: M]=[1: 0: 0],[0: 1: 0],[0: 0: 1]$ corresponding to flat metrics.

In particular, we have constructed two paths of solutions of the Einstein-Dirac equation deforming the non-Einstein Sasakian metrics on S^{3}.

2. The integrability condition for the Einstein-Dirac equation in dimension $n=3$

The spinor bundle of a three-dimensional Riemannian manifold is a complex vector bundle of dimension two. Moreover, there exists a quaternionic structure commuting with the Clifford multiplication by real vectors (see [1]). Consequently, in case of a real WKnumber λ, the corresponding space of WK-spinors is a quaternionic vector space. In the spinor bundle let us introduce the metric connection ∇^{λ} given by the formula

$$
\nabla_{X}^{\lambda} \psi:=\nabla_{X} \psi-\frac{3}{4} \mathrm{~d} S(X) \psi-\lambda\left\{\frac{2}{S} \operatorname{Ric}(X)-X\right\} \cdot \psi-\frac{1}{4 S} X \cdot \mathrm{~d} S \cdot \psi
$$

and denote by Ω^{λ} its curvature form. Then we obtain the following.
Proposition 1. Let N^{3} be a simply-connected three-dimensional Riemannian manifold and suppose that the scalar curvature $S \neq 0$ does not vanish. Then the following conditions are equivalent:

1. N^{3} is a non-trivial solution of the Einstein-Dirac equation with real eigenvalue λ;
2. N^{3} admits a WK-spinor with real WK-number λ;
3. N^{3} admits two $W K$-spinors with real WK-number λ;
4. The curvature $\Omega^{\lambda} \equiv 0$ vanishes identically.

If the scalar curvature $S \neq 0$ is constant, the condition $\Omega^{\lambda} \equiv 0$ has been investigated and yields algebraic equations involving the Ricci tensor and its covariant derivative (see [3], Theorem 8.3). In order to formulate the integrability condition, we denote by $X \times Y$
the vector cross product of two vectors $X, Y \in T\left(N^{3}\right)$. For brevity, let us introduce the endomorphism $T: T\left(N^{3}\right) \rightarrow T\left(N^{3}\right)$ given by the formula

$$
T(X)=\sum_{i=1}^{3} e_{i} \times\left(\nabla_{e_{i}} \operatorname{Ric}\right)(X)
$$

which will be used in the proof of the Main Theorem.
Theorem 1 (See [3]). Let N^{3} be a simply-connected three-dimensional Riemannian manifold with constant scalar curvature $S \neq 0 . N^{3}$ admits a solution of the Einstein-Dirac equation with real eigenvalue λ if and only if the following three conditions are satisfied:

1. $\quad 8 \lambda^{2}\left\{S^{2}-2|\operatorname{Ric}|^{2}\right\}=S^{3}$;
2. $\quad 8 \lambda^{2}\{S \operatorname{Ric}(X)-2 \operatorname{Ric} \circ \operatorname{Ric}(X)\}-4 \lambda S T(X)-S^{2} \operatorname{Ric}(X)=0$;
3. $8 \lambda^{2}\{2 \operatorname{Ric}(X)-S X\} \times\{2 \operatorname{Ric}(Y)-S Y\}+8 \lambda S\left\{\left(\nabla_{X} \operatorname{Ric}\right)(Y)-\left(\nabla_{Y} \operatorname{Ric}\right)(X)\right\}$

$$
+S^{3} X \times Y=2 S^{2} \sum_{i<j}\left\{R_{j Y} \delta_{i X}+R_{i X} \delta_{j Y}\right\} e_{i} \times e_{j}
$$

3. Proof of the Main Theorem

We fix an orthonormal frame e_{1}, e_{2}, e_{3} of vector fields on N^{3} consisting of eigenvectors of the Ricci tensor:

$$
\operatorname{Ric}=\left(\begin{array}{ccc}
A & 0 & 0 \\
0 & B & 0 \\
0 & 0 & C
\end{array}\right)
$$

Denote by $\sigma^{1}, \sigma^{2}, \sigma^{3}$ the dual frame and consider the connection forms $\omega_{i j}=\left\langle\nabla e_{i}, e_{j}\right\rangle$ of the Levi-Civita connection. The structure equations of the Riemannian manifold N^{3} are

$$
\begin{aligned}
& \mathrm{d} \omega_{12}=\omega_{13} \wedge \omega_{32}+\frac{1}{2}(C-A-B) \sigma^{1} \wedge \sigma^{2} \\
& \mathrm{~d} \omega_{13}=\omega_{12} \wedge \omega_{23}+\frac{1}{2}(B-A-C) \sigma^{1} \wedge \sigma^{3} \\
& \mathrm{~d} \omega_{23}=\omega_{21} \wedge \omega_{13}+\frac{1}{2}(A-B-C) \sigma^{2} \wedge \sigma^{3}
\end{aligned}
$$

and the covariant derivative ∇ Ric is given by the matrix of 1-forms

$$
\nabla \mathrm{Ric}=\left(\begin{array}{ccc}
\mathrm{d} A & (A-B) \omega_{12} & (A-C) \omega_{13} \\
(A-B) \omega_{12} & \mathrm{~d} B & (B-C) \omega_{23} \\
(A-C) \omega_{13} & (B-C) \omega_{23} & \mathrm{~d} C
\end{array}\right)
$$

The second equation of Theorem 1 yields the condition that all elements outside the diagonal of the (1,1)-tensor T are zero:

$$
(A-B) \omega_{12}\left(e_{1}\right)=0=(A-B) \omega_{12}\left(e_{2}\right)
$$

$$
\begin{aligned}
& (C-A) \omega_{13}\left(e_{1}\right)=0=(C-A) \omega_{13}\left(e_{3}\right) \\
& (B-C) \omega_{23}\left(e_{2}\right)=0=(B-C) \omega_{23}\left(e_{3}\right) .
\end{aligned}
$$

First, we discuss the generic case that A, B, C are pairwise different. Then there exist numbers K, L, M such that

$$
\omega_{12}=K \sigma^{3}, \quad \omega_{13}=L \sigma^{2}, \quad \omega_{23}=M \sigma^{1}
$$

The parameter triples $\{A, B, C\}$ and $\{K, L, M\}$ are related via the structure equations by the formulas

$$
A=-2 K L, \quad B=2 K M, \quad C=-2 L M
$$

The first and second equation of Theorem 1 become equivalent to the following system of algebraic equations:

$$
\begin{aligned}
& 1^{\prime} . \lambda= \pm \frac{S}{2 \sqrt{2}} \sqrt{\frac{S}{S^{2}-2|\operatorname{Ric}|^{2}}} ; \\
& 2^{\prime} .2 S\left(S^{2}-2|\operatorname{Ric}|^{2}\right)\{(A-C) L+(B-A) K\}^{2}=S\left(S A-2 A^{2}\right)-A\left(S^{2}-2|\operatorname{Ric}|^{2}\right), \\
& \\
& 2 S\left(S^{2}-2|\operatorname{Ric}|^{2}\right)\{(C-B) M+(A-B) K\}^{2}=S\left(S B-2 B^{2}\right)-B\left(S^{2}-2|\operatorname{Ric}|^{2}\right), \\
& \\
& 2 S\left(S^{2}-2|\operatorname{Ric}|^{2}\right)\{(B-C) M+(C-A) L\}^{2}=S\left(S C-2 C^{2}\right)-C\left(S^{2}-2|\operatorname{Ric}|^{2}\right)
\end{aligned}
$$

We solve this system of algebraic equations with respect to the parameters K, L, M. It turns out that 2^{\prime} can be written in the form

$$
P_{i}(K, L, M) \cdot Q(K, L, M)=0
$$

$(1 \leq i \leq 3)$, where the polynomials P_{1}, P_{2}, P_{3} and Q are given by the formulas

$$
\begin{aligned}
P_{1}(K, L, M)= & \left(-K L^{2}+L^{2} M+K^{2}(L+M)\right)^{2} \\
P_{2}(K, L, M)= & \left(K M^{2}+L M^{2}+K^{2}(L+M)\right)^{2} \\
P_{3}(K, L, M)= & \left(L M(-L+M)+K\left(L^{2}+M^{2}\right)\right)^{2} \\
Q(K, L, M)= & -K^{2} L(L-M)^{2} M+L^{3} M^{3} \\
& +K L^{2} M^{2}(M-L)+K^{3}(L-M)(L+M)^{2}
\end{aligned}
$$

The real solutions of $P_{1}=P_{2}=P_{3}=0$ are the pairs $\{K=0, L=0\}$ (the flat metric) and $\{K=M, L=-M\}$ (the space of positive constant curvature). Therefore, we proved that a three-dimensional complete, simply-connected manifold N^{3} with constant scalar curvature $S \neq 0$ and different eigenvalues of the Ricci tensor is isometric to one of the spaces $N^{3}(K, L, M)$, where the parameters K, L, M are solutions of the equation $Q(K, L, M)=$ 0 . These spaces satisfy the conditions 1 and 2 of Theorem 1 and, moreover, a simple computation yields the result that condition 3 of Theorem 1 is satisfied, too. We next discuss
the case that two of the eigenvalues A, B, C coincide, for example, $A=C \neq B$. Then we obtain again

$$
\omega_{12}=K \sigma^{3}, \quad \omega_{23}=M \sigma^{1}
$$

but there is no condition for the connection form ω_{13}. We compute the matrix of the (1, 1)-tensor T :

$$
T=\left(\begin{array}{ccc}
(B-C) K & 0 & 0 \\
0 & (C-B)(K+M) & 0 \\
0 & 0 & (B-C) M
\end{array}\right)
$$

Since the scalar curvature S as well as the eigenvalues $A=C, B$ of the Ricci tensor are constant, the second equation of Theorem 1 yields that K and M are constant and, moreover, coincide:

$$
K=M=\text { constant }
$$

In case of $K=M=0$ we have $\omega_{12}=\omega_{23}=0$ and $A=C$. In particular, the Ricci tensor is parallel, ∇ Ric $=0$. Therefore, in this case N^{3} is a Ricci-parallel three-dimensional manifold admitting a WK-spinor. Then N^{3} is either flat or a space of constant positive curvature (see [3], Theorem 8.2). Finally, we consider the case of $K=M=1$, i.e., $\omega_{12}=\sigma^{3}$ and $\omega_{23}=\sigma^{1}$. Differentiating the equation $\omega_{12}=\sigma^{3}$, we obtain

$$
\begin{aligned}
& \omega_{13} \wedge \omega_{32}-\frac{1}{2} B \sigma^{1} \wedge \sigma^{2}=\mathrm{d} \omega_{12}=\mathrm{d} \omega^{3}=\omega_{31} \wedge \sigma^{1}+\omega_{32} \wedge \sigma^{2} \\
& -\frac{1}{2} B \sigma^{1} \wedge \sigma^{2}=-\sigma^{1} \wedge \sigma^{2}
\end{aligned}
$$

Consequently, $B=2$ and the tensors T and Ric are given by the matrices

$$
T=\left(\begin{array}{ccc}
2-C & 0 & 0 \\
0 & 2(C-2) & 0 \\
0 & 0 & 2-C
\end{array}\right), \quad \text { Ric }=\left(\begin{array}{ccc}
C & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & C
\end{array}\right)
$$

The second condition of Theorem 1 yields the equations $(S=2+2 C)$:

$$
\begin{aligned}
& 8 \lambda^{2}\left(S C-2 C^{2}\right)-4 \lambda S(2-C)-S^{2} C=0 \\
& 8 \lambda^{2}(2 S-8)+8 \lambda S(2-C)-2 S^{2}=0
\end{aligned}
$$

Solving these equations with respect to λ and C we obtain the three solutions:

1. $C=2$ and $\lambda= \pm \frac{3}{2}$. Then N^{3} is isometric to S^{3}.
2. $C=-1$ and $\lambda=0$. Then the scalar curvature $S=0$ is zero.
3. $C=\frac{1}{2}(-1 \pm \sqrt{5})$ and $\lambda=1 \pm \frac{1}{2} \sqrt{5}$. These metrics are the non-Einstein Sasakian metrics on S^{3} admitting WK-spinors (see [3]). The corresponding space is contained in the family $N^{3}(K, L, M)$.
We have discussed all possibilities and, therefore, we have finished the proof of the Main Theorem.

4. Moduli space of solutions

The moduli space of all three-dimensional Riemannian manifolds with constant scalar curvature $S \neq 0$ and WK-spinors is given by the triples $\{K, L, M\}$ of real numbers satisfying the equation of order six, $Q(K, L, M)=0$. The polynomial Q is symmetric in $\{K,-L, M\}$. Denote by

$$
\gamma_{1}=K-L+M, \quad \gamma_{2}=-K L+K M-L M, \quad \gamma_{3}=-K L M
$$

the elementary symmetric functions of these variables. Then we have

$$
Q=4 \gamma_{1} \gamma_{2} \gamma_{3}-\gamma_{2}^{3}-4 \gamma_{3}^{2} .
$$

Consider the projective variety $V_{\mathbb{C}} \subset \mathbb{P}^{2}(\mathbb{C})$ defined by the homogeneous polynomial Q :

$$
V_{\mathbb{C}}=\left\{[K: L: M] \in \mathbb{P}^{2}(\mathbb{C}): Q(K, L, M)=0\right\}
$$

$V_{\mathbb{C}}$ has three singular points:

$$
V_{\mathbb{C}}^{\text {sing }}=\{[1: 0: 0],[0: 1: 0],[0: 0: 1]\}
$$

and these points correspond to the flat metric. We will now parametrize the variety $V_{\mathbb{C}}$ by two meromorphic functions defined on a smooth Riemann surface. $V_{\mathbb{C}}$ is given by the equation $(K=1)$:

$$
Q(1, L, M)=L^{3}(M-1)^{2}(M+1)+L^{2} M(1+M)^{2}-L M^{2}(1+M)-M^{3}=0
$$

Let us introduce the variables

$$
a=M-L-L M, \quad b=(L-M) L M .
$$

Then we obtain $Q(1, L, M)=-a^{3}+4 b(1+a)$ and the equation defining the variety $V_{\mathbb{C}}$ becomes much simpler:

$$
b=\frac{1}{4} \frac{a^{3}}{1+a} .
$$

Next we consider a square root of $a+1$ and we solve the equations

$$
z^{2}-1=a=M-L-L M, \quad \frac{1}{4} \frac{\left(z^{2}-1\right)^{3}}{z^{2}}=b=(L-M) L M
$$

with respect to L and M. Then we obtain four solution pairs $\{L, M\}$ depending on the variable z. For example,

$$
\begin{aligned}
& L(z)=\frac{\left.-(1+z)\left(1-2 z+z^{2}+\sqrt{(1+z)\left(1+3 z-5 z^{2}+z^{3}\right.}\right)\right)}{4 z} \\
& M(z)=\frac{\left.(1+z)\left(1-2 z+z^{2}+\sqrt{(1+z)\left(1+3 z-5 z^{2}+z^{3}\right.}\right)\right)}{4 z}
\end{aligned}
$$

The polynomial

$$
(z+1)\left(1+3 z-5 z^{2}+z^{3}\right)=(z+1)(z-1)(z+(2+\sqrt{5}))(z+(2-\sqrt{5}))
$$

has four different zeros. The square root $\sqrt{(1+z)\left(1+3 z-5 z^{2}+z^{3}\right)}$ is a meromorphic function on the compact Riemann surface of genus $g=1$. Consequently, there exists a torus \mathbb{C} / Γ and elliptic functions $L, M: \mathbb{C} / \Gamma \rightarrow \mathbb{P}^{1}(\mathbb{C})$ such that the components of the variety $V_{\mathbb{C}} \backslash V_{\mathbb{C}}^{\text {sing }}$ are parametrized by L and M :

$$
V_{\mathbb{C}}=\{[1: L(z): M(z)]: \quad z \in \mathbb{C} / \Gamma\}
$$

The functions $L-M$ and $L \cdot M$ are given by the formulas:

$$
L-M=-\frac{(1+z)(z-1)^{2}}{2 z}, \quad L \cdot M=-\frac{(1+z)^{2}(z-1)}{2 z} .
$$

The moduli space we are interested in coincides with the real points of the projective variety $V_{\mathbb{C}}$. If $K=0$, the only solutions of the equation $Q(0, L, M)=0$ are $L=0$ or $M=0$, i.e., the points $[0: 1: 0]$ and $[0: 0: 1]$. Therefore we can parametrize the moduli space by the parameter $M \in \mathbb{R}$ solving the equation $Q(1, L, M)=0$ with respect to $L=L(M)$. In this way we obtain a configuration of six curves in $\mathbb{P}^{2}(\mathbb{R})$ connecting the three singular points of $V_{\mathbb{C}}$ (see the figure in Section 1). However, we obtain geometrically different metrics on S^{3} only for two curves parametrized by the real parameter $0 \leq M \leq \infty$. The graphs of the function $L_{ \pm}(M)$ are given in Fig. 1.

The functions $L_{ \pm}(M)$ are monotone and tend to ± 1 in case that M tends to infinity. Let us discuss the geometric invariants of these metrics. The graph of the scalar curvatures $S_{ \pm}(M)$ depending on M is given by Fig. 2.

Next we plot the eigenvalues $A_{ \pm}(M), B_{ \pm}(M), C_{ \pm}(M)$ of the Ricci tensor for both families of metrics (Figs. 3 and 4):

In dimension $n=3$ the number

$$
\lambda^{2}(D) \cdot\left[\operatorname{vol}\left(N^{3}\right)\right]^{2 / 3}
$$

Fig. 1. The graph of $L_{ \pm} M$.

Fig. 2. The scalar curvatures.
is a homothety invariant, where $\lambda(D)$ is an eigenvalue of the Dirac operator. In case of a WK-spinor we have

$$
\lambda^{2}=\frac{1}{8} \frac{S^{3}}{S^{2}-2 \mid \text { Ric }\left.\right|^{2}}
$$

and, therefore, we obtain the formula

$$
\lambda^{2} \cdot \operatorname{vol}^{2 / 3}=\frac{1}{8}\left(2 \pi^{2}\right)^{2 / 3} \frac{S^{3}}{S^{2}-2|\operatorname{Ric}|^{2}} \frac{1}{\{|K-L||M-L||K+M|\}^{2 / 3}} .
$$

Figs. 5 and 6 contain the graph of $\lambda^{2} \mathrm{vol}^{2 / 3}(M)$ depending on the parameter M for both families of metrics.

Finally, let us discuss the behaviour of the rational function

$$
\Psi=\frac{L^{2}}{K M}
$$

Fig. 3. The eigenvalues of the Ricci tensor for $L_{+}(M)$.

Fig. 4. The eigenvalues of the Ricci tensor for $L_{-}(M)$.
on the variety $V_{\mathbb{C}} \subset \mathbb{P}^{2}(\mathbb{C})$. It turns out that Ψ has simple zeros at the singular points [1:0:0] and $[0: 0: 1]$. Indeed, solving the equation defining $V_{\mathbb{C}}$ with respect to $L=L(M)(K=1)$ we obtain

$$
\lim _{M \rightarrow 0} \frac{L^{2}(M)}{M}=0, \quad \lim _{M \rightarrow 0} \frac{\mathrm{~d}}{\mathrm{~d} M}\left(\frac{L^{2}(M)}{M}\right)=1
$$

The third singular point $[0: 1: 0]$ is a pole of order two. In the regular part of $V_{\mathbb{C}}$ the function Ψ has 12 ramification points. Among them 10 points are first order ramification points. The ramification points of order two are the points

$$
[K: L: M]=\left[1: \frac{1}{4}(1 \pm \sqrt{5}): 1\right]
$$

Fig. 5. $\lambda^{2} \mathrm{vol}^{2 / 3}$ in case of $L_{+}(M)$.

Fig. 6. $\lambda^{2} \mathrm{vol}^{2 / 3}$ in case of $L_{-}(M)$.

These parameters correspond precisely to the non-Einstein-Sasakian metrics on S^{3} admitting solutions of the Einstein-Dirac equation.

References

[1] Th. Friedrich, Dirac-Operatoren in der Riemannschen Geometrie, Vieweg, Wiesbaden, 1997.
[2] Th. Friedrich, E.C. Kim, Some remarks on the Hijazi inequality and generalizations of the Killing equation for spinors, J. Geom. Phys. (2000), in press.
[3] E.C. Kim, Th. Friedrich, The Einstein-Dirac equation on Riemannian spin manifolds, J. Geom. Phys. 33 (2000) 128-172.

[^0]: ${ }^{2}$ Supported by the SFB 288 of the DFG.
 E-mail address: friedric@mathematik.hu.berlin.de (T. Friedrich).

