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Abstract

This paper contains a classification of all three-dimensional manifolds with constant eigenvalues
of the Ricci tensor that carry a non-trivial solution of the Einstein–Dirac equation. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Consider a Riemannian spin manifold of dimensionn ≥ 3 and denote byD the Dirac
operator acting on spinor fields. A solution of the Einstein–Dirac equation is a spinor field
ψ solving the equations

Ric − 1
2S · g = ±1

4Tψ, D(ψ) = λψ.

HereS denotes the scalar curvature of the space,λ is a real constant andTψ the energy–
momentum tensor of the spinor fieldψ defined by the formula

Tψ(X, Y ) = (X · ∇Yψ + Y · ∇Xψ,ψ).
The scalar curvatureS is related to the eigenvalueλ and the length of the spinor fieldψ by
the formula

S = ± λ

n− 2
|ψ |2.
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In [3] we introduced the weak Killing equation for a spinor fieldψ∗:

∇Xψ∗ = n

2(n− 1)
dS(X)ψ∗ + 2λ

(n− 2)S
Ric(X) · ψ∗ − λ

n− 2
X · ψ∗

+ 1

2(n− 1)S
X · dS · ψ∗

Any weak Killing spinorψ∗ (WK-spinor) yields a solutionψ of the Einstein–Dirac equation
after normalization

ψ =
√
(n− 2)|S|
|λ||ψ∗|2 ψ∗.

In fact, in dimensionn = 3 the Einstein–Dirac equation is essentially equivalent to the
weak Killing equation (see [2,3]). Up to now the following three-dimensional Riemannian
manifolds admitting WK-spinors are known:
1. the flat torusT 3 with a parallel spinor;
2. the sphereS3 with a Killing spinor;
3. two non-Einstein Sasakian metrics on the sphereS3 admitting WK-spinors. The scalar

curvature of these two left-invariant metrics equalsS = 1 ± √
5.

The aim of this paper is to classify all Riemannian 3-manifolds with constant eigenvalues
of the Ricci tensor and admitting a solution of the Einstein–Dirac equation. In particular,
we will prove the existence of a one-parameter family of left-invariant metrics onS3 with
WK-spinors. This family contains the two non-Einstein Sasakian metrics with WK-spinors
on S3, but does not contain the standard sphereS3 with Killing spinors. Moreover, any
simply-connected, complete Riemannian manifoldN3 6= S3 with WK-spinors and constant
scalar curvature is isometric to a space of this one-parameter family. In order to formulate
the result precisely, we fix real parametersK,L,M ∈ R and denote byN3(K,L,M)

the three-dimensional, simply-connected and oriented Riemannian manifold defined by the
following structure equations:

ω12 = Kσ 3, ω13 = Lσ 2, ω23 = Mσ 1,

or, equivalently:

dσ 1 = (L−K)σ 2 ∧ σ 3, dσ 2 = (M +K)σ 1 ∧ σ 3, dσ 3 = (L−M)σ 1 ∧ σ 2.

The one-formsσ 1, σ 2, σ 3 are the dual forms of an orthonormal frame of vector fields.
Using this frame the Ricci tensor ofN3(K,L,M) is given by the matrix

Ric =

 −2KL 0 0

0 2KM 0
0 0 −2LM


 .

Main Theorem. Let N3 6= S3 be a complete, simply-connected Riemannian manifold
with constant eigenvalues of the Ricci tensor and scalar curvatureS 6= 0. If N3 admits a
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WK-spinor, thenN3 is isometric toN3(K,L,M) and the parameters are a solution of the
equation

−K2L(L−M)2M + L3M3 + KL2M2(M − L)+K3(L−M)(L+M)2 = 0 (*)

Conversely, any spaceN3(K,L,M) such that(K,L,M) 6= (0,0,0) is a solution of(*)
admits two WK-spinors for one and only one WK-numberλ. With respect to the fixed
orientation ofN3(K,L,M) we have the two cases:

λ =




S

2
√

2

√
S

S2 − 2|Ric|2 if −K < M,

λ = − S

2
√

2

√
S

S2 − 2|Ric|2 if M < −K.

The spacesN3(K,L,M) are isometric toS3 equipped with a left-invariant metric.

Remark. If the parametersK = M coincide, the solution of Eq.(*) is given by

L = 1
4K(1 −

√
5), L = 1

4K(1 +
√

5)

and we obtain the Ricci tensors

Ric =




1

2
K2(

√
5 − 1) 0 0

0 2K2 0

0 0
1

2
K2(

√
5 − 1)




or

Ric =




−1

2
K2(1 +

√
5) 0 0

0 2K2 0

0 0 −1

2
K2(1 +

√
5)


 .

The non-Einstein–Sasakian metrics onS3 occur for the parameterK = 1 (see[3]).

Remark. Using the standard basis of the Lie algebraso(3) we can write the left-invariant
metric of the spaceN3(K,L,M) in the following way:



1

|M − L||K +M| 0 0

0
1

|K − L||M − L| 0

0 0
1

|K − L||K +M|



.
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Eq. (*) is a homogeneous equation of order six. The transformation(K,L,M) →
(µK,µL,µM) corresponds to a homothety of the metric. Therefore, up to a homoth-
ety, the moduli space of solutions is a subset of the real projective spaceP

2(R) given by
Eq. (*). This subset is a configuration of six curves inP2(R) connecting the three points
[K : L : M]=[1:0:0], [0:1:0], [0:0:1]corresponding to flat metrics.

In particular, we have constructed two paths of solutions of the Einstein–Dirac equation
deforming the non-Einstein Sasakian metrics onS3.

2. The integrability condition for the Einstein–Dirac equation in dimensionn = 3n = 3n = 3

The spinor bundle of a three-dimensional Riemannian manifold is a complex vector
bundle of dimension two. Moreover, there exists a quaternionic structure commuting with
the Clifford multiplication by real vectors (see [1]). Consequently, in case of a real WK-
numberλ, the corresponding space of WK-spinors is a quaternionic vector space. In the
spinor bundle let us introduce the metric connection∇λ given by the formula

∇λ
Xψ := ∇Xψ − 3

4
dS(X)ψ − λ

{
2

S
Ric(X)−X

}
· ψ − 1

4S
X · dS · ψ

and denote by�λ its curvature form. Then we obtain the following.

Proposition 1. LetN3 be a simply-connected three-dimensional Riemannian manifold and
suppose that the scalar curvatureS 6= 0 does not vanish. Then the following conditions are
equivalent:
1. N3 is a non-trivial solution of the Einstein–Dirac equation with real eigenvalueλ;
2. N3 admits a WK-spinor with real WK-numberλ;
3. N3 admits two WK-spinors with real WK-numberλ;
4. The curvature�λ ≡ 0 vanishes identically.

If the scalar curvatureS 6= 0 is constant, the condition�λ ≡ 0 has been investigated
and yields algebraic equations involving the Ricci tensor and its covariant derivative (see
[3], Theorem 8.3). In order to formulate the integrability condition, we denote byX × Y
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the vector cross product of two vectorsX, Y ∈ T (N3). For brevity, let us introduce the
endomorphismT : T (N3) → T (N3) given by the formula

T (X) =
3∑
i=1

ei × (∇eiRic)(X),

which will be used in the proof of the Main Theorem.

Theorem 1(See [3]). LetN3 be a simply-connected three-dimensional Riemannian man-
ifold with constant scalar curvatureS 6= 0. N3 admits a solution of the Einstein–Dirac
equation with real eigenvalueλ if and only if the following three conditions are satisfied:

1. 8λ2{S2 − 2|Ric|2} = S3;
2. 8λ2{SRic(X)− 2Ric◦ Ric(X)} − 4λST(X)− S2Ric(X) = 0;
3. 8λ2{2Ric(X)− SX} × {2Ric(Y )− SY} + 8λS{(∇XRic)(Y )− (∇YRic)(X)}

+S3X × Y = 2S2
∑
i<j

{RjYδiX + RiXδjY}ei × ej .

3. Proof of the Main Theorem

We fix an orthonormal framee1, e2, e3 of vector fields onN3 consisting of eigenvectors
of the Ricci tensor:

Ric =



A 0 0

0 B 0

0 0 C


 .

Denote byσ 1, σ 2, σ 3 the dual frame and consider the connection formsωij = 〈∇ei, ej 〉 of
the Levi–Civita connection. The structure equations of the Riemannian manifoldN3 are

dω12 = ω13 ∧ ω32 + 1
2(C − A− B)σ 1 ∧ σ 2,

dω13 = ω12 ∧ ω23 + 1
2(B − A− C)σ 1 ∧ σ 3,

dω23=ω21 ∧ ω13 + 1
2(A− B − C)σ 2 ∧ σ 3,

and the covariant derivative∇Ric is given by the matrix of 1-forms

∇Ric =




dA (A− B)ω12 (A− C)ω13

(A− B)ω12 dB (B − C)ω23

(A− C)ω13 (B − C)ω23 dC


 .

The second equation of Theorem 1 yields the condition that all elements outside the diagonal
of the (1,1)-tensorT are zero:

(A− B)ω12(e1) = 0 = (A− B)ω12(e2),
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(C − A)ω13(e1) = 0 = (C − A)ω13(e3),

(B − C)ω23(e2) = 0 = (B − C)ω23(e3).

First, we discuss the generic case thatA,B,C are pairwise different. Then there exist
numbersK,L,M such that

ω12 = Kσ 3, ω13 = Lσ 2, ω23 = Mσ 1.

The parameter triples{A,B,C} and{K,L,M} are related via the structure equations by
the formulas

A = −2KL, B = 2KM, C = −2LM.

The first and second equation of Theorem 1 become equivalent to the following system of
algebraic equations:

1′. λ = ± S

2
√

2

√
S

S2 − 2|Ric|2 ;

2′. 2S(S2−2|Ric|2){(A− C)L+ (B − A)K}2 = S(SA− 2A2)− A(S2 − 2|Ric|2),
2S(S2 − 2|Ric|2){(C − B)M + (A− B)K}2 = S(SB− 2B2)− B(S2−2|Ric|2),
2S(S2 − 2|Ric|2){(B − C)M + (C − A)L}2 = S(SC− 2C2)− C(S2−2|Ric|2).

We solve this system of algebraic equations with respect to the parametersK,L,M. It turns
out that 2′ can be written in the form

Pi(K,L,M) ·Q(K,L,M) = 0,

(1 ≤ i ≤ 3), where the polynomialsP1, P2, P3 andQ are given by the formulas

P1(K,L,M) = (−KL2 + L2M +K2(L+M))2,

P2(K,L,M) = (KM2 + LM2 +K2(L+M))2,

P3(K,L,M) = (LM(−L+M)+K(L2 +M2))2,

Q(K,L,M) = −K2L(L−M)2M + L3M3

+KL2M2(M − L)+K3(L−M)(L+M)2.

The real solutions ofP1 = P2 = P3 = 0 are the pairs{K = 0, L = 0} (the flat metric) and
{K = M,L = −M} (the space of positive constant curvature). Therefore, we proved that a
three-dimensional complete, simply-connected manifoldN3 with constant scalar curvature
S 6= 0 and different eigenvalues of the Ricci tensor is isometric to one of the spaces
N3(K,L,M), where the parametersK,L,M are solutions of the equationQ(K,L,M) =
0. These spaces satisfy the conditions 1 and 2 of Theorem 1 and, moreover, a simple
computation yields the result that condition 3 of Theorem 1 is satisfied, too. We next discuss
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the case that two of the eigenvaluesA,B,C coincide, for example,A = C 6= B. Then we
obtain again

ω12 = Kσ 3, ω23 = Mσ 1,

but there is no condition for the connection formω13. We compute the matrix of the
(1,1)-tensorT :

T =



(B − C)K 0 0

0 (C − B)(K +M) 0

0 0 (B − C)M


 .

Since the scalar curvatureS as well as the eigenvaluesA = C,B of the Ricci tensor are
constant, the second equation of Theorem 1 yields thatK andM are constant and, moreover,
coincide:

K = M = constant.

In case ofK = M = 0 we haveω12 = ω23 = 0 andA = C. In particular, the Ricci
tensor is parallel,∇Ric = 0. Therefore, in this caseN3 is a Ricci-parallel three-dimensional
manifold admitting a WK-spinor. ThenN3 is either flat or a space of constant positive
curvature (see [3], Theorem 8.2). Finally, we consider the case ofK = M = 1, i.e.,
ω12 = σ 3 andω23 = σ 1. Differentiating the equationω12 = σ 3, we obtain

ω13 ∧ ω32 − 1
2Bσ

1 ∧ σ 2 = dω12 = dω3 = ω31 ∧ σ 1 + ω32 ∧ σ 2

−1
2Bσ

1 ∧ σ 2 = −σ 1 ∧ σ 2.

Consequently,B = 2 and the tensorsT and Ric are given by the matrices

T =




2 − C 0 0

0 2(C − 2) 0

0 0 2− C


 , Ric =



C 0 0

0 2 0

0 0 C


 .

The second condition of Theorem 1 yields the equations(S = 2 + 2C):

8λ2(SC− 2C2)− 4λS(2 − C)− S2C = 0,

8λ2(2S − 8)+ 8λS(2 − C)− 2S2 = 0.

Solving these equations with respect toλ andC we obtain the three solutions:
1. C = 2 andλ = ±3

2. ThenN3 is isometric toS3.
2. C = −1 andλ = 0. Then the scalar curvatureS = 0 is zero.
3. C = 1

2(−1 ± √
5) andλ = 1 ± 1

2

√
5. These metrics are the non-Einstein Sasakian

metrics onS3 admitting WK-spinors (see [3]). The corresponding space is contained in
the familyN3(K,L,M).

We have discussed all possibilities and, therefore, we have finished the proof of the Main
Theorem.
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4. Moduli space of solutions

The moduli space of all three-dimensional Riemannian manifolds with constant scalar
curvatureS 6= 0 and WK-spinors is given by the triples{K,L,M}of real numbers satisfying
the equation of order six,Q(K,L,M) = 0. The polynomialQ is symmetric in{K,−L,M}.
Denote by

γ1 = K − L+M, γ2 = −KL + KM − LM, γ3 = −KLM

the elementary symmetric functions of these variables. Then we have

Q = 4γ1γ2γ3 − γ 3
2 − 4γ 2

3 .

Consider the projective varietyVC ⊂ P2(C) defined by the homogeneous polynomialQ:

VC = {[K : L : M] ∈ P2(C) : Q(K,L,M) = 0}.
VC has three singular points:

V
sing
C

= {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}
and these points correspond to the flat metric. We will now parametrize the varietyVC

by two meromorphic functions defined on a smooth Riemann surface.VC is given by the
equation(K = 1):

Q(1, L,M) = L3(M − 1)2(M + 1)+ L2M(1 +M)2 − LM2(1 +M)−M3 = 0.

Let us introduce the variables

a = M − L− LM, b = (L−M)LM.

Then we obtainQ(1, L,M) = −a3 + 4b(1 + a) and the equation defining the varietyVC
becomes much simpler:

b = 1

4

a3

1 + a
.

Next we consider a square root ofa + 1 and we solve the equations

z2 − 1 = a = M − L− LM,
1

4

(z2 − 1)3

z2
= b = (L−M)LM

with respect toL andM. Then we obtain four solution pairs{L,M} depending on the
variablez. For example,

L(z) = −(1 + z)(1 − 2z+ z2 +
√
(1 + z)(1 + 3z− 5z2 + z3))

4z
,

M(z) = (1 + z)(1 − 2z+ z2 +
√
(1 + z)(1 + 3z− 5z2 + z3))

4z
.
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The polynomial

(z+ 1)(1 + 3z− 5z2 + z3) = (z+ 1)(z− 1)(z+ (2 +
√

5))(z+ (2 −
√

5))

has four different zeros. The square root
√
(1 + z)(1 + 3z− 5z2 + z3) is a meromorphic

function on the compact Riemann surface of genusg = 1. Consequently, there exists a
torusC/0 and elliptic functionsL,M : C/0 → P

1(C) such that the components of the
varietyVC\V sing

C
are parametrized byL andM:

VC = {[1 : L(z) : M(z)] : z ∈ C/0}.
The functionsL−M andL ·M are given by the formulas:

L−M = − (1 + z)(z− 1)2

2z
, L ·M = − (1 + z)2(z− 1)

2z
.

The moduli space we are interested in coincides with the real points of the projective
varietyVC. If K = 0, the only solutions of the equationQ(0, L,M) = 0 areL = 0 or
M = 0, i.e., the points [0 : 1 : 0] and [0 : 0 : 1].Therefore we can parametrize the
moduli space by the parameterM ∈ R solving the equationQ(1, L,M) = 0 with respect
toL = L(M). In this way we obtain a configuration of six curves inP2(R) connecting the
three singular points ofVC (see the figure in Section 1). However, we obtain geometrically
different metrics onS3 only for two curves parametrized by the real parameter 0≤ M ≤ ∞.
The graphs of the functionL±(M) are given in Fig. 1.

The functionsL±(M) are monotone and tend to±1 in case thatM tends to infinity.
Let us discuss the geometric invariants of these metrics. The graph of the scalar curvatures
S±(M) depending onM is given by Fig. 2.

Next we plot the eigenvaluesA±(M), B±(M), C±(M) of the Ricci tensor for both
families of metrics (Figs. 3 and 4):

In dimensionn = 3 the number

λ2(D) · [vol(N3)]2/3

Fig. 1. The graph ofL±M.



208 T. Friedrich / Journal of Geometry and Physics 36 (2000) 199–210

Fig. 2. The scalar curvatures.

is a homothety invariant, whereλ(D) is an eigenvalue of the Dirac operator. In case of a
WK-spinor we have

λ2 = 1

8

S3

S2 − 2|Ric|2
and, therefore, we obtain the formula

λ2 · vol2/3 = 1

8
(2π2)2/3

S3

S2 − 2|Ric|2
1

{|K − L||M − L||K +M|}2/3
.

Figs. 5 and 6 contain the graph ofλ2vol2/3(M) depending on the parameterM for both
families of metrics.

Finally, let us discuss the behaviour of the rational function

9 = L2

KM

Fig. 3. The eigenvalues of the Ricci tensor forL+(M).
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Fig. 4. The eigenvalues of the Ricci tensor forL−(M).

on the varietyVC ⊂ P2(C). It turns out that9 has simple zeros at the singular points
[1 : 0 : 0] and [0 : 0 : 1].Indeed, solving the equation definingVC with respect to
L = L(M)(K = 1) we obtain

lim
M→0

L2(M)

M
= 0, lim

M→0

d

dM

(
L2(M)

M

)
= 1.

The third singular point [0 : 1 : 0] is a pole of order two. In the regular part ofVC the
function9 has 12 ramification points. Among them 10 points are first order ramification
points. The ramification points of order two are the points

[K : L : M] = [1 : 1
4(1 ±

√
5) : 1].

Fig. 5.λ2vol2/3 in case ofL+(M).
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Fig. 6.λ2vol2/3 in case ofL−(M).

These parameters correspond precisely to the non-Einstein–Sasakian metrics onS3 admit-
ting solutions of the Einstein–Dirac equation.
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